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Metrics and experimental data for assessing unbalanced disassembly lines 
 

Abstract: Disassembly lines are inherently multi-criteria, with balance having the possibility of 
being one of the lower priorities.  This is due to the fact that other criteria – for example, 
removing valuable or hazardous materials early on in the process – may be of more importance 
than obtaining an optimal balance.  In addition, complete disassembly may not be desired, 
required, or even possible, resulting in only partial disassembly being conducted.  The result may 
be a disassembly sequence that readily satisfies the decision maker’s primary requirements, but 
at the expense of an unbalanced line.  However, obtaining the decision maker’s primary 
requirements may not sufficiently justify exceptionally poor balance.  Alternatively, the 
difference between a balanced disassembly line and one that is unbalanced – but at the expense 
of other desirable criteria – may turn out to be so insignificant that a focus purely on balance may 
obfuscate the benefits of considering other criteria.  Therefore, metrics are also needed to 
quantitatively evaluate the merits of all considered criteria, including the level of balance (or 
unbalance).  In this paper, a multi-criteria benchmark data set and associated metrics are 
developed for use in quantitatively evaluating an unbalanced paced disassembly line.  These data 
and metrics are then demonstrated using an established disassembly line model and a 
deterministic, multi-criteria search heuristic. 
 
Keywords: paced production system, disassembly, multi-criteria decision making, benchmark 

data set, metrics, reverse manufacturing, modeling, unbalanced lines 

1.   PROBLEM INTRODUCTION 

Unbalancing an un-paced production line has been shown to potentially increase production rates 
when task times are stochastic and appropriate buffers are provided between workstations 
(Hillier and Boling, 1966 and 1979).  Unbalancing can also be an unintended consequence of 
disassembly lines, even when considering a paced line and deterministic task times.   

Disassembly lines are the result of manufacturers increasingly recycling and 
remanufacturing their post-consumed products as a result of new, more rigid environmental 
legislation, increased public awareness, and extended manufacturer responsibility. The economic 
attractiveness of reusing products, subassemblies, or parts instead of disposing of them has 
further fueled this effort.  Recycling is a process performed to retrieve the material content of 
used and non-functioning products.  Remanufacturing, on the other hand, is an industrial process 
in which worn-out products are restored to like-new conditions. Thus, remanufacturing provides 
the quality standards of new products with used parts. The first crucial step of both of these 
processes is disassembly. 

Disassembly is defined as the methodical extraction of valuable parts/subassemblies and 
materials from discarded products through a series of operations. After disassembly, reusable 
parts/subassemblies are cleaned, refurbished, tested, and directed to inventory for 
remanufacturing operations. The recyclable materials can be sold to raw-material suppliers, 
while any residuals are sent to landfills.  The multi-objective Disassembly Line Balancing 
Problem (DLBP) seeks to find a disassembly solution schedule which: provides a feasible 
disassembly sequence, minimizes the number of workstations, minimizes total idle time, and 
ensures similar idle times at each workstation (as well as addressing other, disassembly-specific 
concerns). 
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In this paper, the multi-objective Disassembly Line Balancing Problem is defined and 
metrics are demonstrated in order to measure various aspects of the performance of a given 
heuristic’s ability to generate a desirable part removal sequence.  A varying size, known optimal 
solution, benchmark data set is then developed and analyzed.  As DLBP has been shown to be 
NP-complete (McGovern and Gupta, 2007), heuristics are generally needed to provide a part 
removal sequence.  Due to sub-optimal nature of heuristics, especially when considering larger 
problem instances, the ability to quantitatively measure a given heuristic’s ability to satisfy 
multiple disassembly criteria on a paced line while attempting to balance the line is of interest.  
Here, a general-purpose deterministic search algorithm is used as a case study heuristic to 
demonstrate how the various disassembly criteria under consideration perform using various 
sizes of the benchmark data set.  These results are then used to evaluate the heuristic using the 
developed measures and metrics. 

2.   LITERATURE REVIEW 

A major part of manufacturing and assembly operations, the assembly line is a production line 
where material moves continuously at a uniform rate through a sequence of workstations where 
assembly work is performed.  With research papers going back to the 1950s, the Assembly Line 
Balancing problem is well defined and fairly well understood.  While having differences from 
assembly line balancing, the recent development of DLBP requires that related problems be fully 
investigated and understood in order to better define DLBP and to obtain guidance in the search 
for appropriate methodologies to model and to solve it.  Gutjahr and Nemhauser (1964) first 
described a solution to the Assembly Line Balancing problem, while Erel and Gokcen (1999) 
developed a modified version by allowing for mixed-model lines (assembly lines used to 
assemble different models of the same product).  Suresh et al. (1996) first presented a genetic 
algorithm to provide a near-optimal solution to the Assembly Line Balancing problem.  Tabu 
search is used in balancing assembly lines in Lapierre et al. (2006) on the Simple Assembly Line 
Balancing problem type I (SALB-I) with instances from the literature (Arcus 1 and 2) and a case 
study from industry.  Hackman et al. (1989) proposed a branch-and-bound heuristic for the 
SALB-I problem.  Ponnambalam et al. (1999) compared line-balancing heuristics using a 
quantitative evaluation of six assembly line balancing techniques. 

Unbalancing a production line was first proposed by Hillier and Boling (1966) in 
recognition of studies conducted modeling flow shops using queueing theory.  Modeling was 
accomplished with independent queues in series, with an infinite queue before the first server 
and a finite buffer of capacity s for all others.  Each workstation was modeled individually as an 
M/Ek/1/s+1 queue (M/Ek/1 for the first workstation, where M represents arrivals according to a 
Poisson distribution and Ek represents service according to an Erlang distribution with shape 
parameter k) and having probabilistic arrival rates (in agreement with the nature of an un-paced 
line; i.e., a flow shop with buffers) and probabilistic service rates (conceptually equivalent to 
probabilistic task times).  It was found, not only that balancing the line was detrimental to its 
production rate, but that unbalancing should be performed in such a way that the largest amounts 
of work should be allocated at the end workstations and the least amounts allocated to the ones in 
the middle (Hillier and Boling, 1966 and 1979, and Stecke and Solberg, 1985). 

Several recent papers have discussed the different aspects of end-of-life processing.  
Brennan et al. (1994) and Gupta and Taleb (1994) investigated the problems associated with 
disassembly planning and scheduling.  Torres et al. (2004) reported a study for non-destructive 
automatic disassembly of personal computers.  Güngör and Gupta (1999b, 1999c, 2002) 
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presented the first introduction to disassembly line balancing and then developed an algorithm 
for solving the DLBP in the presence of failures with the goal of assigning tasks to workstations 
in a way that probabilistically minimizes the cost of defective parts (2001).  McGovern et al. 
(2003) first proposed combinatorial optimization techniques for the DLBP.  For a review of 
environmentally conscious manufacturing and product recovery see Güngör and Gupta (1999a).  
For a comprehensive review of disassembly sequencing see Lambert (2003) and Lambert and 
Gupta (2005). 

3.   DISASSEMBLY LINE MODEL 

3.1. Introduction 
The specific problem demonstrated in this paper seeks to fulfill five objectives: 

1. minimize the number of disassembly workstations and hence, minimize the total idle time 
2. ensure the idle times at each workstation are similar 
3. remove hazardous components early in the disassembly sequence 
4. remove high-demand components before low-demand components 
5. minimize the number of direction changes required for disassembly 

A major constraint is the requirement to provide a feasible disassembly sequence for the product 
being investigated.  The result is an integer, deterministic, n-dimensional, multiple criteria 
decision-making problem with an exponentially growing search space (where n represents the 
number of parts for removal).  Solutions consist of an ordered sequence (i.e., n-tuple) of 
elements; if a DLBP solution consisted of the eight-tuple 〈5, 2, 8, 1, 4, 7, 6, 3〉, then component 5 
would be removed first, followed by component 2, then component 8, and so on.   

While different authors use a variety of definitions for the term “balanced” in reference to 
assembly (Elsayed and Boucher, 1994) and disassembly lines, we apply the following definition 
(McGovern et al., 2003; McGovern and Gupta, 2008) that considers the total number of 
workstations NWS and the station times STj (the total processing time requirement in workstation 
j); this definition will be used consistently throughout the paper: 
 
Definition: A line is optimally balanced when the fewest possible number of workstations is 
needed and the variation in idle times between all workstations is minimized, while observing all 
constraints.  This is mathematically described by 

Minimize NWS 

then 

Minimize [max (STx) − min (STy)] ∀ x, y∈{1, 2,…, NWS} 

Line balancing can be visualized as in Figure 1.  The five large boxes represent 
workstations with the total height of these boxes indicating cycle time CT (the maximum time 
available at each workstation).  The smaller numbered boxes represent each part (1 through 11 
here) with each being proportionate in height to its corresponding part removal time.  The gray 
area is indicative of the idle time at each workstation. 
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>> Insert Figure 1 about here << 

3.2. Model and measures 
A mathematical model is developed to quantitatively describe disassembly-line-related objective 
functions and performance measures. 
 
Theorem: Let PRTk be the part removal time for the kth of n parts where CT is the maximum 
amount of time available to complete all tasks assigned to each workstation. Then for the most 
efficient distribution of tasks, the minimum number of workstations, NWS* satisfies 

NWS* ≥ 
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Proof: If the above inequality is not satisfied, then there must be at least one workstation 
completing tasks requiring more than CT of time, which is a contradiction.   
 
Subsequent bounds are shown to be true in a similar fashion and are presented throughout the 
paper without proof. 

The upper bound for the number of workstations is given by 

NWSnom = n  (2)

therefore 
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Testing a given solution against the precedence constraints fulfills the major constraint of 
precedence preservation. Minimizing the total idle time I, which will also minimize the total 
number of workstations, attains objective 1 and is described by 
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This objective is represented as 
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Minimize Z1 = ∑
=

−
NWS

j
jSTCT
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)(  
(6) 

Line balancing seeks to achieve perfect balance (i.e., all idle times equal to zero).  When 
this is not achievable, either Line Efficiency (LE) or the Smoothness Index (SI) is often used as a 
performance evaluation tool (Elsayed and Boucher, 1994).  SI rewards similar idle times at each 
workstation, but at the expense of allowing for a large (sub-optimal) number of workstations.  
This is because SI compares workstation elapsed times to the largest STj instead of to CT.  (SI is 
very similar in format to the sample standard deviation from the field of statistics, but using 
max(STj) | j∈{1, 2,…, NWS} rather than the mean of the station times.)  LE rewards the 
minimum number of workstations but allows unlimited variance in idle times between 
workstations because no comparison is made between STjs.  The balancing method used here 
(McGovern et al., 2003, McGovern and Gupta, 2008) seeks to simultaneously minimize the 
number of workstations while ensuring that idle times at each workstation are similar, though at 
the expense of the generation of a nonlinear objective function.  A resulting minimum numerical 
value is indicative of a more desirable solution, providing both a minimum number of 
workstations and similar idle times across all workstations.  The measure of balance F is 
represented as 

∑
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with the DLBP balancing objective represented as 

Minimize Z2 = ∑
=
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j
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2)(  
(8) 

Perfect balance is indicated by 

Z2 = 0 (9) 

Note that mathematically, Formula (8) effectively makes Formula (6) redundant due to the fact 
that it concurrently minimizes the number of workstations. 

The lower bound on F is given by the optimal balance F* where  
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while the upper bound is described by the worst case balance Fnom as  
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Note that, in order to make the balance results comparable in magnitude to all subsequent 

metrics and to allow for more legible graphic comparisons with worst-case calculations in charts, 
the effects of squaring portions of Formula (7) can be normalized by taking the square root of the 
final balance measure calculated.  For example, solutions having an equal number of 
workstations (e.g., NWS = 3) but differing idle times at each workstation (Ij) resulting in differing 
balance such as Ij = 〈1, 1, 4〉 and Ij = 〈2, 2, 2〉 (the latter is optimal) would have balance values of 
18 and 12 respectively, while the normalized values would stand at 4.24 and 3.46, still indicating 
better balance with the latter solution, but also giving a sense of the relative improvement that 
solution provides, which the measure generated by Formula (7) lacks. 

A hazard measure H was developed to quantify each solution sequence’s performance in 
removing hazardous parts, with a lower calculated value being more desirable.  This measure is 
based on binary variables that indicate whether a part is considered to contain hazardous material 
(set equal to one if the part is hazardous, else zero) and its position in the sequence.  A given 
solution sequence hazard measure is defined as the sum of hazard binary flags multiplied by their 
position in the solution sequence, thereby rewarding the removal of hazardous parts early in the 
part removal sequence.  This measure is represented as 
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where PSk identifies the kth part in the solution sequence PS; i.e., for solution 〈3, 1, 2〉, PS2 = 1.  
The DLBP hazardous part objective is represented as 

Minimize Z3 = )(
1

∑
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n

k
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hk  (14)

The lower bound on the hazardous part measure is given by 

∑
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where the set of hazardous parts HP is defined as 

HP = {k : hk ≠ 0 ∀ k ∈ P} (16)

and where P is the set of n part removal tasks.  Its cardinality can be calculated with 

∑
=
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n

k
khHP

1

||  
(17)
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For example, a product with three hazardous parts would give an H* value of 1 + 2 + 3 = 6.  The 
upper bound on the hazardous part measure is given by 

∑
+−=

=
n

HPnp
nom pH

1||

 (18)

or alternatively 

|||)|( HPHPnHnom −⋅=  (19)

For example, three hazardous parts in a product having a total of twenty would give an Hnom 
value of 18 + 19 + 20 = 57 or equivalently, Hnom = (20 ⋅ 3) – 3 = 60 – 3 = 57.  Formulae (15), 
(18), and (19) are combined to give 
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Also, a demand measure D was developed to quantify each solution sequence’s 

performance in removing high-demand parts, with a lower calculated value being more desirable.  
This measure is based on positive integer values that indicate the quantity required of this part 
after it is removed – or zero if it is not desired – and its position in the sequence.  Any given 
solution sequence demand measure is defined as the sum of the demand value multiplied by their 
position in the sequence, rewarding the removal of high demand parts early in the part removal 
sequence.  This measure is represented as 
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where N represents set of natural numbers; i.e., {0, 1, 2, …}.  The DLBP part demand objective 
is represented as 

Minimize Z4 = )(
1

∑
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k
PS k

dk  (22)

The lower bound on the demand measure (D*) is given by Formula (21) where 

nPSPSPS ddd ≥≥≥ ...
21

 (23)

For example, three parts with demands of 4, 5, and 6 respectively would give a best-case value of 
(1 ⋅ 6) + (2 ⋅ 5) + (3 ⋅ 4) = 28.  The upper bound on the demand measure (Dnom) is given by 
Formula (21) where 

nPSPSPS ddd ≤≤≤ ...
21

 (24)
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For example, three parts with demands of 4, 5, and 6 respectively would give a worst-case value 
of (1 ⋅ 4) + (2 ⋅ 5) + (3 ⋅ 6) = 32. 

Finally, a direction measure R was developed to quantify each solution sequence’s 
performance in removing parts with the same orientation together, with a lower calculated value 
indicating minimal direction changes and hence a more desirable solution.  This measure is 
based on a count of the direction changes.  Integer values represent each possible direction 
(typically r ∈ {+ x, − x, + y, − y, + z, − z}; in this case |r| = 6).  These directions are expressed as 
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and are easily expanded to other or different directions in a similar manner.  The direction 
measure is represented as 
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with the DLBP direction part objective represented as 

Minimize Z5 = ∑
−

=

1

1

n

k
kR  (27)

The lower bound on the direction measure is given by 

1||* −= rR  (28)

For example, for a given product containing six parts that are installed/removed in directions rk = 
(– y, + x, – y, – y, + x, + x), the resulting best-case value would be 2 – 1 = 1 (e.g., one possible R* 
solution containing the optimal, single-change of product direction would be: 〈– y, – y, – y, + x, + 
x, + x〉).  In the specific case where the number of unique direction changes is one less than the 
total number of parts n, the upper bound on the direction measure would be given by 

|| rR nom =  where 1|| −= nr  (29)

Otherwise, the measure varies depending on the number of parts having a given removal 
direction and the total number of removal directions.  It is bounded by 

1|| −≤≤ nRr nom  where 1|| −< nr  (30)

For example, six parts installed/removed in directions rk =  (+ x, + x, + x, – y, + x, + x) would 
give an Rnom value of 2 as given by the lower bound of Formula (30) with a possible solution 
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sequence of 〈+ x, + x, – y, + x, + x, + x〉.  Six parts installed/removed in directions rk =  (– y, + x, 
– y, – y, + x, + x) would give an Rnom value of 6 – 1 = 5 as given by the upper bound of Formula 
(30) with a solution sequence of 〈– y, + x, – y, + x, – y, + x〉 for example. 

In the special case where each part has a unique removal direction, the measures for R* 
and Rnom are equal and are given by 

1* −== nRR nom   where nr =||  (31)

Note that the above optimal and nominal hazard, demand, and direction formulae are 
dependent upon favorable precedence constraints that will allow for generation of these optimal 
or nominal measures. 

3.3. Models and measures as prototypes 
It is important to note that the H, D, and R metrics are also intended as forming the three basic 
prototypes of any additional disassembly line evaluation criteria.  These three different models 
are then the basis for developing differing or additional objectives.   

The H metric is used as the prototype for any binary criteria; for example a part could be 
listed according to the categories “valuable” and “not valuable.”   

The D metric is used as the prototype for any known value (integer or real) criteria; for 
example a part can be assigned a D-type metric which contains the part’s actual dollar value.   

The R metric is used as the prototype for any adjacency or grouping criteria; for example 
a part could be categorized as “glass,” “metal,” or “plastic” if it were desirable to remove parts 
together in this form of grouping. 

3.4. Metrics 
The primary mathematical evaluation tool developed for quantitative analysis is shown in 
Formula (32) and is subsequently referred to as the efficacy index EI.  The efficacy index is the 
ratio of the difference between a calculated measure x and its worst-case measure xnom to the 
measure’s sample range (i.e., the difference between the best-case measure x* and the worst-case 
measure as given by: max(Xy) − min(Xz) | y, z ∈{1, 2,…, |X|} from the area of statistical quality 
control).  It is expressed as a percentage and described by (with the vertical lines in Formulae 
(32) through (33) representing absolute value versus cardinality as is seen elsewhere in this 
paper) 

||
||100

*xx
xxEI

nom

nom
x −

−⋅=  
(32)

This generates a value between 0 and 100%, indicating the percentage of optimum for any given 
measure and any given combinatorial optimization methodology being evaluated.  For example, 
the efficacy index formula for balance would read 

||
||100

*FF
FFEI

nom

nom
F −

−⋅=  
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For the study of multiple data sets, as is the case in this paper, probability theory presents us with 
the concept of a sample mean.  The sample mean of a method’s efficacy index can be calculated 
using 

y
xx

xxEI
y

i nom

inom
x ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−⋅= ∑
=1

* ||
||100  

(33)

where y is the sample size (the number of data sets).  While Formula (32) provides individual 
data set size efficacy indices – especially useful in demonstrating worst and best case as well as 
trends with instance size – Formula (33) allows a single numerical value that provides a 
quantitative measure of the location of the data center in a sample. 

3.5. Multi-criteria considerations 
One of the ways in which the complexity of DLBP manifests itself is with multiple, often 
conflicting objectives.  The field of multiple-criteria decision making provides a variety of means 
for addressing the selection of a solution where several objectives exist.  The study in this paper 
addresses the multiple criteria aspects of disassembly using preemptive (lexicographic) goal 
programming.  Since level of unbalance is the primary consideration in this paper, additional 
objectives are only considered subsequently; that is, the heuristic first seeks to select the best-
performing measure of balance solution; equal balance solutions are then evaluated for 
hazardous part removal positions; equal balance and hazard measure solutions are evaluated for 
high-demand part removal positions; and equal balance, hazard measure, and high-demand part 
removal position solutions are evaluated for the number of direction changes.  This priority 
ranking approach was selected over a weighting scheme for its simplicity, ease in re-ranking the 
priorities, ease in expanding or reducing the number of priorities, due to the fact that other 
weighting methods can be readily addressed at a later time, and primarily to enable 
unencumbered efficacy analysis of the sample heuristic and demonstrated data instances. 

4.   KNOWN OPTIMAL SOLUTION BENCHMARK DATA SET 

4.1. Background 
Any DLBP solution methodology needs to be applied to a collection of test cases to demonstrate 
its performance as well as to identify its limitations.  In addition, new methodologies must first 
have their developed software thoroughly tested by undergoing a verification and validation 
process.  Verification consists of providing a wide range of inputs to a module of the software to 
ensure proper operation of an individual software component, while validation determines 
whether or not the program as a whole provides a correct output for given input, necessitating (in 
the case of DLBP and similar problems) varying-size data sets having known optimal results. 

Benchmark data sets are common for many NP-complete problems, such as 
Nugent15/20/30, Elshafei19, and Krarup30 for application to the QUADRATIC ASSIGNMENT 
PROBLEM and Oliver30 and RY48P for the TRAVELING SALESPERSON PROBLEM (see 
Lawler et al. 1985 for problem overviews).  Unfortunately, because of their size and their design, 
most of these existing data sets have no known optimal answer and new solutions are not 
compared to the optimal solution, but rather the best solution to date.  

In addition, since DLBP is a recent problem, very few instances exist to study the 
performance of different heuristic solutions.  With no appropriate benchmark data sets, it was 
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desirable to develop a set of instances for the DLBP in order to evaluate DLBP heuristic 
performance.  The known optimal solution benchmark line balance data set described here 
readily allows for determination of efficacy (a method’s effectiveness in finding good solutions). 

4.2. Formulation 
This size-independent a priori benchmark data set was generated based on the following. Since, 
in general, solutions to larger and larger DLBP instances cannot be verified as optimal (due to 
the time complexity of exhaustive search), it is proposed that instances be generated in such a 
way as to always provide a known solution.  This was done by using part times consisting 
exclusively of prime numbers, further selected to ensure that no combinations of these part 
removal times allowed for any equal summations (in order to reduce the number of possible 
optimal solutions).  For example, part removal times of 1, 3, 5, and 7 and CT = 16 would have 
minimum idle time solutions of not only one 1, one 3, one 5, and one 7 at each workstation, but 
various additional combinations of these as well since 1 + 7 = 3 + 5 = ½ CT.  Subsequently, the 
chosen instances were made up of parts with removal times of 3, 5, 7, and 11 and CT = 26.  As a 
result, the optimal balance for all subsequent instances would consist of a perfect balance of 
precedence-preserving combinations of 3, 5, 7, and 11 at each workstation with idle times of 
zero.  The size of this A Priori data set is then constrained by 

n = x⋅|PRT| : x ∈ Ζ+ (34)

 
where Z+ represents set of positive integers; i.e., {1, 2, …}.   

To further complicate the data (i.e., provide a large, feasible search space), only one part 
was listed as hazardous and this was one of the parts with the largest part removal time 
(specifically, the last one listed in the initial data; see Table 1).  In addition, one part (the last 
listed, second largest part removal time component) was listed as being demanded.  This was 
done so that only the hazardous sequencing and the demand sequencing would be demonstrated, 
while providing a slight solution sequence disadvantage to any purely greedy methodology 
(since two parts with part removal times of 3 and 5 are needed along with the larger part removal 
time parts to reach F*, assigning hazardous and demanded parts to those smaller-part-removal-
time parts may allow some methodologies to artificially obtain the initial F* single workstation 
sequence).  From each part-removal-time size, the first listed part was selected to have a removal 
direction differing from the other parts with the same part removal time.  This was done to 
demonstrate direction selection while requiring any solution-generating methodology to move 
these first parts of each part-removal-time size encountered to the end of the sequence (i.e., into 
the last workstation) in order to obtain the optimal direction value of R* = 1 (i.e., if the solution 
technique being evaluated is able to successfully place the hazardous and demanded parts 
towards the front of the sequence).  Also, there were no precedence constraints placed on the 
sequence, a deletion that further challenges any method’s ability to attain an optimal solution 
(see McGovern and Gupta, 2008 for a practical case study that also incorporates precedence 
constraints). 
 

>> Insert Table 1 about here << 
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Known optimal results include F* = 0, H* = 1, D* = 2, R* = 1.  While this paper makes use of 
data with |PRT| = 4 unique part removal times, in general for any n parts consisting of this type 
of data, the following can be calculated:  

||
*

PRT
nNWS =  

(35)

nNWSnom =  (36)

0* =I  (37)

||
)1|(|

PRT
PRTCTnInom

−⋅⋅=  
(38)

0* =F  (39)

with Fnom given by Formula (11).   

4.3. Generating the benchmark 
Formulae have been developed to generate all data parameters, as well as for calculating optimal 
and nominal measures, for any size instance (as constrained by Formula (34)). 

Hazard values and measure are given by 

⎩
⎨
⎧

=
,0
,1

kh   
otherwise

nk =
 

(40)

1* =H  (41)

nHnom =  (42)

with demand values and measure given by 

⎩
⎨
⎧

=
,0
,1

kd   
otherwise

PRT
PRTnk

||
)1|(| −⋅=  

(43)
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⎩
⎨
⎧

=
,1
,2*D   

otherwise
H 1=

 
(44)

⎩
⎨
⎧ −

=
,

,1
n

n
Dnom   

otherwise
nH =

 
(45)

and part removal direction values and measure given by 

⎩
⎨
⎧

=
,0
,1

kr   
otherwise

PRT
nPRT

PRT
n

PRT
nk 1

||
)1|(|,...,1

||
2,1

||
,1 +⋅−++=  

(46)

1* =R  (47)

⎪⎩

⎪
⎨

⎧

⋅
−⋅=
|,|2

,1||2
,0

PRT
PRTRnom   

otherwise
PRTn

PRTn
||2

||
⋅=

=
 

(48)

Since |PRT| = 4 in this paper, each part removal time is generated by 

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

≤<

≤<

≤<

≤<

=

nkn

nkn

nkn

nk

PRT k

4
3,11

4
3

2,7
24,5
40,3

 

(49)

While the demand values as generated by Formula (43) are the preferred representation 
(due to the fact that the resulting small numerical values make it easy to interpret demand 
efficacy since D = k), algorithms that allow incomplete disassembly may terminate after placing 
the single demanded part in the solution sequence.  In this case, Formulae (43) – (45) may be 
modified to give 

⎩
⎨
⎧

=
,1
,2

kd   
otherwise

PRT
PRTnk

||
)1|(| −⋅=  

(50)
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⎪
⎪
⎩

⎪⎪
⎨

⎧

+

+
=

∑

∑

=

=

,1

,2

1

1*
n

p

n

p

p

p
D   

otherwise

H 1=
 

(51)

⎪
⎪
⎩

⎪⎪
⎨

⎧

+

+−
=

∑

∑

=

=

,

,1

1

1
n

p

n

p
nom

pn

pn
D   

otherwise

nH =
 

(52)

4.4. Analysis 
It is noted that a data set containing parts with equal PRTs and no precedence constraints will 
have more than one optimal solution.  To properly gauge the performance of any solution-
generating technique on the DLBP A Priori data, the size of the optimal solution set needs to be 
quantified.   

From probability theory we know that, for example, with n = 12 and |PRT| = 4, the size of 
the set of optimally balanced solutions |F*| when using the DLBP A Priori data could be 
calculated as ( ) ( ) ( ) 904,915,171234246836912 =⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅  from Table 2. 
 

>> Insert Table 2 about here << 
 
Grouping these counts by workstation and reversing their ordering enables one to more easily 
recognize a pattern. 
 
     (1 2 3 4) 
     (2 4 6 8) 
     (3 6 9 12) 
 
It can be seen that the first row can be generalized as |)|321( PRT⋅⋅⋅⋅ … , the second as 

|)|2642( PRT⋅⋅⋅⋅⋅ … , and the third as |)|3963( PRT⋅⋅⋅⋅⋅ … .  Expanding in this way, the 
number of optimally balanced solutions can be written as 

( )( ) ( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= n
PRT

n
PRT

n
PRT

nPRTPRTF …………
||

3
||

2
||

||2642||1321|| *  

This can be written as 

∏∏∏∏
====

⋅⋅⋅⋅⋅=
||

1

||

1

||

1

||

1

*

||
32||

PRT

x

PRT

x

PRT

x

PRT

x

x
PRT

nxxxF …  

and finally as 
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∏∏
==

⋅=
||

1

||

1

||* ||
PRT

n

y

PRT

x

PRT
n

yxF  

or 

∏ ∏
= =

⋅=
||

1

||

1

||* ||
PRT

x

PRT
n

y

PRT
n

yxF  
(53)

Since |PRT| = 4 in this paper, Formula (53) becomes 

∏∏
= =

⋅=
4

1

4

1

4* ||
x

n

y

n

yxF  
(54)

In our example with n = 12 and |PRT| = 4, Formula (54) is solved as 

( )∏∏∏∏∏
== == =

⋅⋅⋅=⋅=⋅=
4

1

3
4

1

3

1

3
4

1

4
12

1

4
12

* 321||
xx yx y

xyxyxF  

or 

( ) ( ) ( ) ( )321444321333321222321111|| * ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=F  

which, when rearranged, can be written as the more familiar 

( ) ( ) ( ) 904,915,171234246836912|| * =⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=F  

Even when all objectives are considered, there still exist multiple optimal solutions, again 
due to the use of a data set containing parts with equal PRTs and no precedence constraints.  
Using probability theory with the example having n = 12 and |PRT| = 4, it is known that the size 
of the set of solutions optimal in F, H, D, and R, |F*∩ H*∩ D*∩ R*|, when using the DLBP A 
Priori data can be calculated as ( ) ( ) ( ) 368,10123412343611 =⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅  from Table 3. 
 

>> Insert Table 3 about here << 
 
Repeating the technique of grouping these counts by workstation and reversing their ordering 
again reveals a pattern. 
 
     (1 2 3 4) 
     (1 2 3 4) 
     (3 6 1 1) 
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The middle elements will always be the same as those given by Formula (53) but with two fewer 
sets (due to different first and last workstation elements).  The first row is always 

|)|321( PRT⋅⋅⋅⋅ …  since the directional elements in the A Priori data should always be together 
at the end (the beginning in this case since we reversed the sequence for readability) of any 
optimal solution sequence.  The last row (again, reversed) is always 
( ) ( ) ( ) ( )( )( )11||2||||3||2|| ⋅⋅⋅−⋅⋅⋅⋅ PRTnPRTPRTnPRTnPRTn …  since there is only one 

hazardous part (optimal element position k = 1) and only one demanded part (optimal element 
position k = 2).  Combining these components, the number of fully optimal solutions can be 
written as 

⋅⋅⋅⋅⋅=∩∩∩ |)|321(|| **** PRTRDHF …  

( )( ) ( )( ) ⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅⋅⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⋅⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⋅⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 2

||
||2

||
32

||
22

||
1||2642||1321

PRT
nPRT

PRT
n

PRT
n

PRT
nPRTPRT …………  

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ⋅−⋅⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ 11
||

2||
||

3
||

2
|| PRT

nPRT
PRT

n
PRT

n
PRT

n …  

By replacing the second term with a modified version of Formula (53) and simplifying the first 
and third terms, this can be written as 
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Expanding the second term gives 
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Combining the first and second terms results in 
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or 
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∏ ∏∏
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with a constraint that 

2
||
>

PRT
n  

Alternatively, this can be written as 

∏∏∏
= =
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=
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(55)

where 

otherwise
PRT

nif
PRT

n
a 2

||
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,2
||

>

⎪⎩

⎪
⎨
⎧ −=  

Since |PRT| = 4 in this paper, Formula (55) becomes 
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In our example with n = 12 and |PRT| = 4, Formula (56) is solved as 
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giving 

( ) ( )( ) ( ) ( ) ( ) ( )( )443322112313|| **** ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=∩∩∩ RDHF  

which, when rearranged, can be written as the more familiar 

( ) ( ) ( ) 368,10123412343611|| **** =⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=∩∩∩ RDHF  
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Although the sizes of both DLBP A Priori optimal solution sets are quite large in these 
examples, they are also significantly smaller than the search space of n! = 479,001,600.  As 
shown in Table 4, the number of solutions that are optimal in balance alone goes from 100% of n 
at n = 4, to 22.9% at n = 8, and to less than 1% at n = 16; as n grows, this percentage gets closer 
and closer to zero.  The number of solutions optimal in all objectives goes from less than 8.3% of 
n at n = 4, to 0.12% at n = 8, dropping to effectively 0% at n = 16; again, as n grows, the 
percentage of optimal solutions gets closer and closer to zero. 
 

>> Insert Table 4 about here << 

4.5. Other optimization priorities 
While this A Priori data set is effective at providing a quantitative evaluation of the level of 
unbalance (along with other objectives), if the primary consideration is not the measure of 
balance, the results may not provide an adequate measure.  In this case, the A Priori data set can 
be further modified to gather additional information, while still providing an optimal level of 
balance and optimal or near-optimal (but always known) values for the other metrics.  For 
example, if the primary consideration was the evaluation of a heuristic’s ability to remove 
hazardous parts as early (or as late) as possible, the parts designated as hazardous would consist 
of the entire latter half of each group of parts having the same A Priori data set part removal 
time.  Alternatively, if the primary objective was demand, each group of parts having the same A 
Priori data set part removal time would contain parts having increasingly larger demand values.  
Finally, if using direction as the primary criteria, parts could be initialized with alternating 
directions.  With these designs, perfect balance could still be achieved while attaining optimal 
placement for any of the other criteria, but it should be noted that only one of these extensions 
should be selected at any time to simplify the calculation of optimal values for the remaining two 
criteria.  

Other extensions include adding additional prototypes, changing the multi-criteria 
ordering of priorities, evaluation under the condition of incomplete or partial disassembly, or 
deleting some evaluation criteria (this is especially applicable to the case where the data set 
would be used in measuring the unbalance resulting from a heuristic applied to an assembly line 
study rather than a disassembly line).  The data may also lend itself to design for disassembly 
efforts, which seek to preemptively mitigate future disassembly complexities.  

Finally, while this benchmark data set has not been designed with stochastic part removal 
times in mind or for use with an un-paced (i.e., job shop) scheduling model, these can be 
addressed in several ways.  It is recognized that the work-sampling operations required to define 
the standard deviation of stochastic task times on an assembly line can be excessively time 
consuming (Tiacci et al., 2003). Tiacci et al. (2003) studied the significance of the task times’ 
standard deviation on the performance of the system model in order to determine if it is worth 
collecting enough data to calculate the standard deviation.  Ultimately, they proposed a 
methodology for performing assembly line balancing with a reduced set of data by using the 
means of the stochastic task times as the sole inputs, that is, without their standard deviation.  
The A Priori benchmark could also be used in this fashion by setting E[x] = µx = x and σx

2 = 0 
∀x∈{PRTk}.  This would be applicable in other cases, including those where use of probabilistic 
data is performed purely deterministically (e.g., by assigning the deterministic average-case or 
worst-case part removal time to the problem) or effectively deterministically (e.g., calculate the 
lowest probability of any candidate task exceeding the cycle time based upon each candidate’s 
means and variances then assign the task with the best discrete mean value; Elsayed and 
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Boucher, 1994).  Alternatively, the stochastic part removal time could be represented 
deterministically as being within some multiple of σ ; e.g., if a part’s removal time were given by 
a normal distribution, this time could be represented deterministically as being within 1σ , 2σ , 
3σ  (68.27%, 95.45%, or 99.73% respectively) or some other tolerance of interest. 

4.6. Demonstration set 
The final configuration of the benchmark as used here was 19 instances with instance size 
equally distributed from n = 8 to n = 80 in increments of |PRT| = 4.  The size and range of the 
instances is considered appropriate, with small ns tested – which decreases the NWS value and 
tends to exaggerate less than optimal performance – as well as large, which demonstrates time 
complexity growth and efficacy changes with n. 

5.   CASE STUDY HEURISTIC 

A search approach that provides a very fast, near-optimal solution to combinatorial optimization 
problems is used as a case study to demonstrate the degree of unbalance as problem size grows, 
as well as its effect on the other criteria.  This heuristic generates a feasible solution using a 
modified exhaustive search technique to provide data sampling of all solutions.  While the case 
study makes use of balance as the highest priority in the interest of both demonstrating the data 
set and the increasing level of unbalance, other priority orderings can be selected in the interest 
of gaining a sense of change in balance level with instance size and in comparison to balance as 
being the highest priority. 

5.1. Background 
In many search applications in the physical world (e.g., antisubmarine warfare, search and 
rescue) exhaustive search is not possible due to time or sensor limitations.  In these cases, it 
becomes practical to sample the search space and operate under the assumption that, for 
example, the highest point of land found during the conduct of a limited search is either is the 
highest point in a given search area or is reasonably near the highest point.  The search technique 
(McGovern and Gupta, 2008) in this paper’s case study works by sampling the exhaustive 
solution set; that is, it searches the solution space in a method similar to an exhaustive search but 
in a pattern that skips solutions (conceptually similar to the STEP functionality in a FOR loop as 
found in computer programming) to significantly minimize the search space (Figure 2; the 
shading indicates solutions visited, the border represents the search space). 
 

>> Insert Figure 2 about here << 
 
The skip size ψ can be as small as ψ = 1 or as large as ψ = n (where n is the number of parts).  
Note that ψ = 1 and ψ = n are not used since ψ = 1 is equivalent to exhaustive search and ψ = n 
generates a trivial solution (it returns only one solution, that being the data in the same sequence 
it is provided in). 

5.2. Search process 
As a modified exhaustive search allowing for solution sampling, it searches similarly to depth-
first search, and allowing for skips in the search sequence.  Due to H-K’s deterministic nature, 
the data can be entered as-given (forward), in reverse order (reverse), or in any other order, all of 
which may affect the solutions visited.  In the basic H-K, searching a permutation, and with for 
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example ψ = 2, the first element in the first solution would be 1, the next element position would 
first consider 1, but since 1 is already in the solution (in element position one), element position 
two would be incremented by one and 2 would be considered and be acceptable.  This is repeated 
for all of the elements until the first solution (i.e., 〈1, 2, 3,…, n〉) is generated.  For the next 
solution visited, the rightmost element in the current solution that is able to be incremented by an 
amount equal to ψ without exceeding n would be incremented byψ; if the solution element’s new 
value is equal to some previous element’s value, the current element’s value is incremented by 
one (again, as long as this does not result in exceeding n).  Any remaining element positions to 
the right would be filled lexicographically (smallest to biggest, left to right) with the remaining 
values, if any.  This process of generating a solution is continued to the left until the first element 
position is reached.  Continuing with the example, the element under consideration would then 
be 1, which would be incremented by ψ = 2 and, therefore, 3 would be considered and inserted 
as the first element position value.  Since element 1 is not yet in the sequence, it would be placed 
in the second solution position, part 2 in the third, etc., and the process continues.  For example, 
with {1, 2, 3, 4}, instead of considering the 4! = 24 possible permutations, only five are visited 
by H-K with ψ = 2 and using forward-only ordered data: 〈1, 2, 3, 4〉, 〈1, 4, 2, 3〉, 〈3, 1, 2, 4〉, 〈3, 1, 
4, 2〉, and 〈3, 4, 1, 2〉.  With n = 5, instead of considering the 5! = 120 possible permutations, only 
16 are considered at ψ = 2 and using forward-only data as demonstrated in Table 5. 
 

>> Insert Table 5 about here << 

5.3. DLBP considerations 
For DLBP and with a product undergoing complete disassembly, H-K can be applied to the 
permutation of the number of parts n with some slight modifications.  Each iteration of the H-K-
generated solution is considered for feasibility (due to precedence constraints).  If it is feasible, 
H-K then looks at each element in the solution and places that element using the next-fit rule 
(from the Bin-Packing problem application; once a bin has no space for a given item attempted 
to be packed into it, that bin is never used again even though a later, smaller item may appear in 
the list and could fit in the bin, see Hu and Shing, 2002).  If it does not fit, a new workstation is 
assigned and previous workstations are never again considered.  (Although NF does not perform 
as well as First-Fit, Best-Fit, First-Fit-Decreasing, or Best-Fit-Decreasing when used in the 
general BIN-PACKING problem, it is the only one of these rules that will work with a DLBP 
solution sequence due to the existence of precedence constraints.)  When all of the work 
elements have been assigned to a workstation, the process is complete and the balance, hazard, 
demand, and direction measures are calculated, and the process is repeated.  The best of all of the 
inspected solution sequences is then saved as the problem solution. 

6.   MULTI-CRITERIA QUANTITATIVE ANALYSIS DEMONSTRATION 

The computer program was written in ANSI C++ and run on a 1.6GHz PM x86-family 
workstation.  Because H-K is deterministic and performs no preprocessing of the data, the 
analyses performed here were run with the benchmark data presented in forward and then reverse 
order.  The two results were then averaged and the two search times were added.  Also, all of the 
instance sizes were run several times, allowing ψ to vary from n − 10 to n − 1 (e.g., at an 
instance size of n = 25, skip would vary as 15 ≤ ψ ≤ 24) with the best solution from these ten 
searches kept.  For small data sets the software was set up so that it would not attempt any skip 
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size smaller than ψ = 3 to avoid exhaustive or near-exhaustive searches (which would result in 
unrealistically large search times on small data sets).  All studies were run multiple times to 
determine an average of the computation times. 

The H-K technique can be seen below (Table 6) on the DLBP A Priori data presented 
forward and reverse at n = 12 and 3 ≤ ψ ≤ 11 (note that without the minimum allowed value of ψ 
= 3, skip values would otherwise include 2 ≤ ψ ≤ 11).  H-K was able to find a solution optimal in 
the number of workstations, balance, and hazard.  The solution found came from the reverse set 
and consisted of NWS* = 3, F* = 0, H* = 1, D = 10 (optimal value is D* = 2), and R = 2 (optimal 
value is R* = 1).  The time to complete the forward and reverse searches averaged 1.56 seconds. 
 

>> Insert Table 6 about here << 
 
Problem size was varied to demonstrate how solution performance changes with increases in n.  
On the full range of data (n = {8, 12, 16,…, 80}), H-K found solutions with NWS* workstations 
up to n = 12, then solutions with NWS* + 1 workstations through data set 11 (n = 48), after which 
it stabilized at NWS* + 2 (Figure 3).  From Formula (32) H-K’s efficacy index in number of 
workstations started at an optimal EINWS = 100%, dropped to a low of EINWS = 92%, then 
continuously climbed through to EINWS = 97% with an efficacy index sample mean in number of 
workstations of NWSEI  = 96%. 
 

>> Insert Figure 3 about here << 
 

Increases in unbalance are seen with increases in data set size.  A detailed view of 
balance performance with problem size can be seen in Figure 4. 
 

>> Insert Figure 4 about here << 
 

While increases in unbalance are seen with increases in n, as a percentage of the overall 
range from best case to worst case, the normalized balance measure tends to decrease (i.e., 
improve) with increases in the data set size (Figure 5).  The normalized balance efficacy index 
dropped from a high of EIF = 100% to a low of EIF = 85% at data set 3 (n = 16) then slowly 
climbed to EIF = 92% giving a sample mean of FEI  = 92%. 
 

>> Insert Figure 5 about here << 
 

The hazardous part was regularly sub-optimally placed.  Hazard part placement stayed 
relatively consistent with problem size (though effectively improving as compared to the worst 
case, as illustrated by Figure 6).  These results are as expected since hazard performance is 
designed to be deferential to balance and affected only when a better hazard measure can be 
attained without adversely affecting balance.  The hazard measure’s efficacy index fluctuates 
between EIH = 57% and EIH = 100%, giving a sample mean of HEI  = 90%. 
 

>> Insert Figure 6 about here << 
 

The high-demand part was also sub-optimally placed, though at a higher rate than the 
hazardous part (Figure 7).  Its efficacy index fluctuates between EID = 7% and EID = 103% (due 
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to better than optimal placement in position k = 1 at the expense of hazard placement).  The 
resulting demand measure sample mean is DEI  = 49%. 
 

>> Insert Figure 7 about here << 
 

With part removal direction structured as to be deferential to balance, hazard, and 
demand, it was seen to decrease in performance when compared to the best case and when 
compared to the worst case (Figure 8).  Though the part removal direction efficacy gets as high 
as EIR = 86%, by data set 5 (n = 24) it has dropped to EIR = 0% and never rises higher again than 
EIR = 43%, resulting in a sample mean of REI  = 20%. 
 

>> Insert Figure 8 about here << 
 

The progressively less than optimal heuristic performance using this data set is a 
desirable characteristic of the benchmark, as it indicates its ability to readily quantify unbalance 
and other performance measures.  The DLBP A Priori benchmark data is especially designed to 
challenge the solution-finding ability of a variety of search methods in order to enable a thorough 
quantitative evaluation of these method’s performances in different areas.   

The DLBP A Priori benchmark is also appropriate for time complexity studies.  With the 
case-study heuristic, a smaller ψ or the inclusion of precedence constraints will increasingly 
move the H-K method towards the optimal solution.  As shown in Figure 9, the time complexity 
performance of H-K provides the tradeoff benefit with the technique’s performance, 
demonstrating the moderate increase in time required with problem size that grows markedly 
slower than the exponential growth of exhaustive search.  Exhaustive and third-order curves are 
shown for comparison. 
 

>> Insert Figure 9 about here << 
 
Based on Figure 9 and Figure 10, a 2nd-order polynomial regression model was used to fit the H-
K curve (assuming the data and structure as described in this study). 
 

>> Insert Figure 10 about here << 
 
The function describing an algorithm’s running time on a computer processor T(n) was fitted 
using regression and found to be T(n) = 0.0033n2 − 0.0002n + 0.2893 (with coefficients 
determined using a common spreadsheet software application).  The small coefficients are 
indicative of a relatively slow runtime growth in instance size.  The coefficient of determination 
is calculated to be 0.9974, indicating 99.74% of the total variation is explained by the calculated 
linear regression curve (the anomaly seen in the H-K curve in Figure 10 is due to the software 
rule set up to prevent exhaustive or near-exhaustive searches at small n).  As seen in Figure 11 
this regression provides a very accurate fit.  With a growth of 0.0033n2 − 0.0002n + 0.2893, the 
average-case time complexity of H-K curve (with forward and reverse data, and skip sizes of n − 
10 ≤ ψ ≤ n − 1) can then be described as Ο(n2) or polynomial complexity.  The deterministic, 
single iteration nature of H-K also indicates that the process would be no faster than this so it 
could be expected that the time complexity lower bound is Ω(n2) and, therefore, H-K appears to 
have an asymptotically tight bound of Θ(n2) as configured in this paper. 
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>> Insert Figure 11 about here << 

 

7.   CONCLUSIONS 

With their multi-criteria nature, disassembly lines that are structured as flow shops can inherently 
possess a tendency to be unbalanced, even when the intent is to achieve a balanced line.  This is 
due to other criteria (e.g., removing valuable or hazardous materials early in the disassembly 
process) having the potential to be of more importance than obtaining an optimal balance.  The 
resulting unbalanced line may sacrifice optimal balance in the interest of a disassembly sequence 
that satisfies the decision maker’s primary requirements.  As such, a set of metrics to measure a 
line’s performance, including the level of unbalance – when task sequences are determined by a 
given heuristic was described – as was a benchmark data set having a known optimal solution 
(including measure of balance) for all instance sizes.  The application of these in evaluating a 
heuristic’s ability to disassemble products of various sizes on a paced line while meeting other, 
potentially conflicting priorities was demonstrated using a deterministic search heuristic. 
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Figure 1  Line balancing depiction 

 
 
 
 
 
 
 

 

 
Figure 2  Exhaustive search space and the H-K search space and methodology 
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Figure 3  Workstation calculation 

 

Figure 4  Detailed level of unbalance 
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Figure 5  Normalized level of unbalance 

Figure 6  Hazard measure with instance size 
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Figure 7  Demand measure with instance size 

Figure 8  Part removal direction measure with instance size 
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Figure 9  Heuristic’s time complexity compared to exhaustive search 

Figure 10  Heuristic’s time complexity compared to second order 
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Figure 11  Detailed heuristic’s time complexity and fitted second-order polynomial regression 
line 

 
 

Table 1  DLBP A Priori data for n = 12 

 
 

Table 2  Number of possible entries in each element position resulting in perfect balance using 
the DLBP A Priori data with n = 12 and |PRT| = 4 

k 1 2 3 4 5 6 7 8 9 10 11 12 
count 12 9 6 3 8 6 4 2 4 3 2 1 

 
 
 

0.00

5.00

10.00

15.00

20.00

25.00

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

n

Ti
m

e 
(in

 s
ec

on
ds

)

H-K
Poly. (H-K)

Part ID 1 2 3 4 5 6 7 8 9 10 11 12
PRT 3 3 3 5 5 5 7 7 7 11 11 11
Hazardous 0 0 0 0 0 0 0 0 0 0 0 1
Demand 0 0 0 0 0 0 0 0 1 0 0 0
Direction 1 0 0 1 0 0 1 0 0 1 0 0
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Table 3  Number of possible entries in each element position resulting in optimal in F, H, D, and 
R using A Priori data with n = 12 and |PRT| = 4 

k 1 2 3 4 5 6 7 8 9 10 11 12 
count 1 1 6 3 4  3 2 1 4 3 2 1 

 
 

Table 4  Comparison of possible solutions to optimal solutions for a given n using the DLBP A 
Priori data 

n n! Number optimal 
in balance 

Number 
optimal in all 

Percentage optimal 
in balance 

Percentage 
optimal in all

4 24 24 2 100.00% 8.33%
8 40,320 9,216 48 22.86% 0.12%
12 479,001,600 17,915,904 10,368 3.74% 0.00%
16 2.09228E+13 1.10075E+11 7,077,888 0.53% 0.00%

 
 

Table 5 H-K results at n = 5 and ψ = 2 

〈1, 2, 3, 4, 5〉 〈3, 4, 1, 2, 5〉 
〈1, 2, 5, 3, 4〉 〈3, 4, 1, 5, 2〉 
〈1, 4, 2, 3, 5〉 〈3, 4, 5, 1, 2〉 
〈1, 4, 5, 2, 3〉 〈5, 1, 2, 3, 4〉 
〈1, 4, 5, 3, 2〉 〈5, 1, 4, 2, 3〉 
〈3, 1, 2, 4, 5〉 〈5, 3, 1, 2, 4〉 
〈3, 1, 4, 2, 5〉 〈5, 3, 1, 4, 2〉 
〈3, 1, 4, 5, 2〉 〈5, 3, 4, 1, 2〉 

 
 

Table 6  H-K solution using the A Priori instance at n = 12 and 3 ≤ ψ ≤ 11 (forward and reverse) 

 

Part ID 12 2 5 8 11 1 4 7 10 9 6 3
PRT 11 3 5 7 11 3 5 7 11 7 5 3
Workstation 1 1 1 1 2 2 2 2 3 3 3 3
Hazardous 1 0 0 0 0 0 0 0 0 0 0 0
Demand 0 0 0 0 0 0 0 0 0 1 0 0
Direction 0 0 0 0 0 1 1 1 1 0 0 0


